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NON-NEWTONIAN FLOW OVER A WEDGE WITH 
SUCTION 

VIJAY K. GARG* 
Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh. PA 15261. U.S.A 

SUMMARY 
A pseudo-similarity solution is obtained for the flow of an incompressible fluid of second grade past a wedge 
with suction at  the surfacc. The non-linear differential equation is solved using quasi-linearization and 
orthonormalization. The numerical method developed for this purpose enables computation of the flow 
characteristics for any values of the parameters K ,  a and b, where K is the dimensionless normal stress 
modulus of the fluid, a is related to the wedge angle and b is the suction parameter. A significant effect of 
suction on the wall shear stress is observed. The present results match exactly those from an earlier 
perturbation analysis for Kx*’ GO.01 but differ significantly as Kx” increases. 
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1. INTRODUCTION 

Boundary layer flows of non-Newtonian fluids have wide-ranging applications, for example in the 
design of thrust bearings and radial diffusers, drag reduction, transpiration cooling and thermal 
oil recovery.’ In the case of fluids of the differential type,2 except for fluids of complexity n = 1, the 
equations of motion are an order higher than the Navier-Stokes equations and the adherence 
boundary condition is insufficient to determine the solution completely. The same is also true for 
the appropriate boundary layer approximations of the equations of motion. 

In the absence of a clear means of obtaining additional boundary conditions, Beard and 
W a l t e r ~ , ~  in their study of an incompressible fluid of second grade, suggested a perturbation 
approach in which the velocity and the pressure field were expanded in a series in terms of a small 
parameter E; the parameter in question multiplied the highest-order spatial derivatives in their 
equation. While the assumption reduces the order of the equation, it treats a singular perturba- 
tion problem as though it were regular. In the case of flows which take place in unbounded 
domains, however, it is possible to augment the boundary conditions on the basis of the fact that 
the solution has to be bounded or has a certain smoothness at infinity. 

Recently Garg and Rajagopa14 studied the stagnation flow of a fluid of second grade by 
augmenting the boundary conditions. Their results agree well with the results of Rajeswari and 
Rathna’ based on the perturbation approach for small values of the perturbation parameter. The 
advantage of augmenting the boundary conditions over the perturbation approach is that the 
analysis is valid even for large values of the parameter E and, as shown by Garg and Rajagopal: 
significant deviations from the Newtonian behaviour are possible for even moderately large 
values of E.  
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Herein we study the flow of a fluid of second grade past a wedge with suction by augmenting 
the boundary conditions. Recently Massoudi and Ramezan’ established ‘non-similar’ solutions 
based on a perturbation approach for such a flow. We find that the results obtained by 
augmenting the boundary conditions are in perfect agreement with their results for small values 
of the perturbation parameter E. We are able to obtain results for E B 1 and in this case we see the 
striking effect of the non-Newtonian natue of the fluid and of the suction parameter on the skin 
friction. 

2. BOUNDARY LAYER EQUATIONS 

For a steady boundary layer flow of a fluid of second grade over a wedge (Figure l), with u and u 
as the x- and y-components of the velocity field respectively, it follows from Reference 6 that 

aii afi -+:=O, 
a2 ay 

au -au - d o  a 2 i i  aua2o a33 a a z u  
aa ay dx ay2 [ayaj.  ay3 ax(  aj.)] ii-+u-=U-+--+K --+E-+- u- . 

Here the dimensionless variables used are 

with L as a characteristic length, v as the kinematic viscosity and U(x) as the potential flow 
velocity outside the boundary layer. With suction the boundary conditions are 

i i = O  and v=b? atj=O, ii+U and aii/aj+O asy-tco, (3) 
where a power-law mass injection velocity at the wedge surface has been assumed, with t as the 
injection velocity index and b as an appropriate dimensionless parameter. Clearly b < 0 for 
suction at the surface. 

Henceforth, for simplicity, we drop the overbar denoting the dimensionless quantities. By 
introducing a ‘pseudo-similarity’ variable 

‘1 = Cyx“, (4) 

where C and a are constants, we seek a solution to the velocity field such that 

u(x9 Y)’ U(X)f’(?), 

Figure 1. Wedge and co-ordinate system 
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and from (1) 

U‘ aU 
u ( x ,  y)= ----f-- ( t l f  ’ - f  1 9  CX” CX’+’ 

where a prime denotes the derivative with respect to the argument. A straightforward substitution 
into (2) yields 

If U = x2’+ and C2 =(a + l), equation (5) reduces to 

K x 2 ” [ ( a +  l)ffi’ -(3a + 1)(2f‘f”’ -f”’)] - [f”’+ff”+ j ( l  - f” ) ]  =0, (6) 

where j = (2a + l)/(a + l), jn being the wedge angle. Notice that (6) involves both q and x and thus 
(2) has not been reduced to an ordinary differential equation as is usually the case with a similarity 
transformation. However, solving (6) is much easier than solving (2) since the former can be solved 
locally at a given x. When a = 0, equation (6) reduces to the equation governing the stagnation 
point flow studied by Garg and Ra jag~pa l .~  In this case equation (6) reduces to an ordinary 
differential equation, thus enabling a similarity solution. Also, for K =O equation (6) reduces to 
the well known Falkner-Skan equation for Newtonian flow over a wedge. 

Since we are primarily interested in the case when K #O, we shall rewrite (6) in the form 

. 3a+ 12f’f”’-f”2 f”’+ff”+/?(l- f ’2)  
f I V = a + l  s + Kx2“(a+ 1)f . (7) 

The appropriate boundary conditions are 

f (O)= -b(a+ l ) - ” 2 ~ ‘ - a ,  f ’ ( O ) = O ,  f ’ ( ~ o ) =  1, f ” ( ~ o ) = O .  (8) 
Equations (7) and (8) are solved numerically using quasi-linearization and orthonormalization. 
We take t = a for simplicity. The solution technique can, however, be used for t # a as well. 

3. NUMERICAL TECHNIQUE 

The system of equations (7) and (.8) constitutes a non-linear, non-homogeneous boundary value 
problem. It is solved locally at a given location using quasi-linearization and orthonormalization; 
the latter is required since the system is ill conditioned as well. The quasi-linearized form of (7) is7 

(a  + 1)f:+ 1 -f:!+ 1 [ 2 f p a  + 1) + ~ - ~ “ / K l / f ,  - f C +  1 [ ~ - ~ “ / K - 2 f : ( 3 ~  + l)/f,] 
-.L+ 1 ((3a+ 1)(ffZ-2f;fP’)-CB(1 - f ;2)+f; ‘ lx-2“lK} l f .2  
- 2 f i +  1 [f:’(3a+ l)-Bfi~-~“/K]/f .=(ff’  + 2/3)~-~”/Kf,, (9) 

where the subscript n or n + 1 represents the nth or (n+ 1)th approximation to the solution. 
Equation (9) being non-homogeneous, the solution at any level of approximation can be written 
as f=fh+f, ,  wheref, is the solution to the homogeneous part of (9) for the (n+ 1)th approxima- 
tion and f ,  is the particular solution. Since (9) is linear at every level of approximation, its 
homogeneous solution is a linear combination of two linearly independent solutions fhl and fh2, 

where {fht(0)9f6,(0), fh’,(O), fh’:(o))= {QO, 190) and { f , C O ) ,  fh,(O)> fh’,(O), fh’:(o)) = ( O ,  90, 1). 
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The fourth order Runge-Kutta method is used to compute the two solutions fhl and fh2. 
Starting at q=O,  the homogeneous part of (9) is integrated up to q = q , ,  where the boundary 
conditions at q = KI are assumed to hold. The value q ,  =20 was found to be adequate for all the 
suction cases ( b  <O) studied here. For the particular solution fp the starting values are taken to be 
fp(0)= -b(a+ l ) - 1 ’ 2 ~ f - a  and fb (O)=f i (O)=f i ’ (O)=O and the Runge-Kutta method is used to 
integrate (9) up to )I,. 

Owing to the ill-conditioned nature of (9), the two solutions fhl and f h 2  that are orthogonal at 
q = 0 become parallel as integration proceeds towards q = KI. The two solutions therefore need to 
be orthonormalized.’ The criterion used to decide when the two solution vectors need ortho- 
normalization was based on the magnitude of the solution vectors. If the magnitude of any of the 
two vectors exceeded a preassigned constant M, orthonormalization was carried out. The 
constant M was taken to be 100. Needless to say, both the homogeneous solutions and the 
particular solution have to be corrected every time orthonormalization is carried out, as 
described in detail by Garg’ and Scott and Watts.g 

Once f h ,  , f h 2  and fp were determined for 0 d q 6 q , ,  the boundary conditions at q = co were 
used to find the appropriate combination of fhl and f h l .  In order to satisfy f ’ (oo )= l  and 
f “ ( o o ) = O ,  we have 

c1 f h ,  07,) + CZfh,(ll,) = 1 -fb(?,), c1f;;,(~m)++2fh’*(YIoo)= -fb’(?,). (10) 

Knowing C ,  and C2 from (lo), we have the solution from 

f ( q  = 1 f 1 ( q  + c2 f h l  ( q  ) + f p  (‘I 1. 
The zeroth approximation to the homogeneous solution was taken to be f ( q )  = q(1 -e -”. This 
satisfies all the boundary conditions for the homogeneous solution in (8), the non-zero value for 
f ( 0 )  being recovered through the particular solution fp(0). Convergence was assumed when the 
ratio of any one of J f ’ , f ”  or f”’ for the last two approximations differed from unity by less than 
l op5  at all values of q in O<q<q,. Less than 10 approximations were required to satisfy this 
convergence criterion for all values of Kx2“ for which results were computed. 

As many as 12 values of the step size Aq were used, especially for large values of x or small 
values of K x ~ ~ ,  in order to reduce the number of points between O,<qdq,  without sacrificing 
accuracy. Actual values of Aq ranged from near q = 0 to 0.5 near q = q , .  As a test of accuracy 
of the solution, it may be noted that for all solutions computed for 0.01 < KxZa < 200, the value of 
fi’(0) computed from (7) at q =O was compared with that obtained from the three-point forward 
difference relation 

where the subscripts 0, 1 and 2 refer to the values o f f ” ’  at q=O, Aq and 261 respectively. The 
difference between the two values of f”(0) thus computed was less than Also, f”’(q,) was 
found to be less than in all cases. Moreover, results for a=O (or /I= 1) and b=O were 
exactly the same as those reported by Garg and R a j a g ~ p a l . ~  We may also point out that for no 
suction ( b  = 0) and /I =+ or a = - 5, f”’(0) = -$ independently of x and K.  Our numerical solution 
verified this result exactly. 

4. RESULTS AND DISCUSSION 

Results were obtained for four values of /I, namely fi = 0,0.25,0.5 and 1.0, various negative values 
of b and for K x ~ ~  varying from zero to 200. When K =0, the order of the differential equation (7) 
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reduces from four to three and no orthonormalization is required for solution. In fact, a 
Newton-Raphson iteration is sufficient to solve the Falkner-Skan problem. 

Figures 2-7 show the variation off and its first three derivatives with respect to q for p = O  (flat 
plate at zero incidence), p = t  and $ (wedges of angles 4 4  and 4 2 )  and p= 1 (two-dimensional 
stagnation point flow) for three values of x-'"/K and two values of the suction parameter b. It is 
clear from these figures that the value of q, used was adequate to simulate q = co. In fact, these 
figures show the results only up to q = 5 or 10, while the value of q, used was 20. It may be noted 
that while the behaviour off and f' does not change much with the wedge angle, that off" and 
f"' changes considerably at fixed values of x -'"/K and b. Large values of f " ( 0 )  and -f"'(O) may 
be noted for p = 0 in Figure 2. These values drop considerably as suction increases (see Figure 3). 
As x-'"/K increases and when the suction parameter b is small, f"' passes through a minimum 
for f l < &  (see Figures 4 and 6), but for 824 or for large suction it increases monotonically to zero 
as q increases. At a much smaller value of x-'"/K,  f "  and f"' for p<& also vary monotonically 
with q, as shown in Figure 2 for x-'"/K =0.1. From these figures we conclude that the boundary 
layer thickness increases with p at small values of x-'"/K but decreases with fl at large values of 
x - * " / K .  Moreover, f"(0) increases with fl at large values of x-'"/K but decreases with p at small 
values of x- '" /K.  Figure 7 shows that at large values of x-'"/K (= 10 here) and with the suction 
parameter b = - 1, the wedge angle p has only a small effect on the characteristics of the flow. 

Figure 8. Wall shear stress as a function of x-'"/K for various values of ,!I and suction parameter b 
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Figure 9. Derivative of wall shear stress as a function of x - ' ~ / K  for various values of fi  and suction parameter b 

It is found that with no suction ( b  = 0), values of f"(0) corresponding to P < i  increase rapidly as 
K x Z a  increases beyond about one. This is evident from Figure 8, which shows the variation of 
f " ( 0 )  with x-'"/K for b=O. It may be pointed out that f " (0 )  determines the shear stress at  the 
wall and is therefore physically important. It is clear from Figure 8 that for small wedge angles 
(fi<i) even a small amount of suction (b= -0.1) reduces the skin friction considerably for 
x- '" /K< 1 and increases it for x- '" /K> 1, while for larger wedge angles (834) the effect of 
suction is much smaller. For the stagnation point flow (P= 1) the skin friction is not affected by 
suction for x-'"/K ~ 0 . 1  but increases with suction for x-'"/K > 0.1. A similar effect of suction is 
found for the derivative of the skin friction, f"'(O), as shown in Figure 9 for various values of the 
suction parameter b and wedge angle P. 

A comparison between the present f"(0)-values and those of Massoudi and Ramezan' 
obtained from a perturbation analysis shows that our results match exactly their results for 
Kx'" GO.01. However, the present results differ significantly as K x Z a  increases or as x-'"/K 
decreases, and it is this region of flow that is of interest. The perturbation analysis of Massoudi 
and Ramezan' is therefore of academic interest only. 

Negative values of the parameter b yield a unique solution for a given fi and K x Z a  as discussed 
above. However, positive values of b, pertaining to injection, lead to multiple solutions. A detailed 
analysis is currently under way in terms of the stability of the various solutions and related issues. 
For the flow of a Newtonian fluid over a wedge it is known that injection yields no stable solution. 
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